Molecular Dynamics Simulation of Nanoindentation-induced Mechanical Deformation and Phase Transformation in Monocrystalline Silicon
نویسندگان
چکیده
This work presents the molecular dynamics approach toward mechanical deformation and phase transformation mechanisms of monocrystalline Si(100) subjected to nanoindentation. We demonstrate phase distributions during loading and unloading stages of both spherical and Berkovich nanoindentations. By searching the presence of the fifth neighboring atom within a nonbonding length, Si-III and Si-XII have been successfully distinguished from Si-I. Crystallinity of this mixed-phase was further identified by radial distribution functions.
منابع مشابه
Molecular dynamics investigations of mechanical behaviours in monocrystalline silicon due to nanoindentation at cryogenic temperatures and room temperature
Molecular dynamics simulations of nanoindentation tests on monocrystalline silicon (010) surface were conducted to investigate the mechanical properties and deformation mechanism from cryogenic temperature being 10 K to room temperature being 300 K. Furthermore, the load-displacement curves were obtained and the phase transformation was investigated at different temperatures. The results show t...
متن کاملNanoindentation-induced phase transformation and structural deformation of monocrystalline germanium: a molecular dynamics simulation investigation
Molecular dynamics simulations were conducted to study the nanoindentation of monocrystalline germanium. The path of phase transformation and distribution of transformed region on different crystallographic orientations were investigated. The results indicate the anisotropic behavior of monocrystalline germanium. The nanoindentation-induced phase transformation from diamond cubic structure to β...
متن کاملPressure-induced amorphization in the nanoindentation of single crystalline silicon
Large-scale molecular dynamics simulations of nanoindentation on a (100) oriented silicon surface were performed to investigate the mechanical behavior and phase transformation of single crystalline silicon. The direct crystalline-to-amorphous transformation is observed during the nanoindentation with a spherical indenter as long as the applied indentation strain or load is large enough. This a...
متن کاملNanoindentation of polysilicon and single crystal silicon: Molecular dynamics simulation and experimental validation
This paper presents novel advances in the deformation behaviour of polycrystalline and single crystal silicon using molecular dynamics (MD) simulation and validation of the same via nanoindentation experiments. In order to unravel the mechanism of deformation, four simulations were performed: indentation of a polycrystalline silicon substrate with a (i) Berkovich pyramidal and a (ii) spherical ...
متن کاملDeformation mechanisms at pop-out in monocrystalline silicon under nanoindentation
This paper clarifies a common misunderstanding of the phase transformation in monocrystalline silicon under nanoindentation, namely that a pop-out represents the onset of a phase transition. Through a detailed investigation into the indentation-induced deformation of monocrystalline silicon using a Berkovich indenter, it was found that a pop-out does not correspond to the onset of the transform...
متن کامل